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Mark-Recapture

Suppose we have three time periods and capture the following
foxes in each period:
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Close-Kin Mark-Recapture

• Bravington et al. (2016)1 defined a pseudo-likelihood model,
identifying the number of kinship pairs within the sample from
the genetic data

• The model can be fit to dead recoveries without previous
observation of the individual

• Rather than a physical tag a genetic sample is taken from
each observed animal

1Bravington, M., Skaug, H. J., & Anderson, E. C. (2016).Close-kin mark-recapture. Statistical Science, 31(2),
259–274. https://doi.org/http://doi.org/10.1214/16-STS552

https://doi.org/http://doi.org/10.1214/16-STS552


The population’s pedigree

Consider two time periods, with a founder generation and one
offspring period, and we observe the highlighted individuals.
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Model assumptions and restrictions

We assume:

1. The population is geographically closed

2. All individuals born before the study began are defined as
founders and their parents are undefined

3. All individuals born during the study must have a female and
male parent within the super population

4. Births are defined as individuals who were born within the
period and survived until the start of the next time period



How would we simulate the population?

Let b0 be the number of founders. We define

b0 ∼ Pois(λ0) (1)

si ∼ Bern(ω) for i ∈ 1, ..., b0 (2)

where si = 1 if individual i is female.

Using the properties of a Bernoulli marked Poisson we define b00
and b01 as the number of male and female founders respectively
where

b00 ∼ Pois(λ0(1− ω)) (3)

b01 ∼ Pois(λ0ω) (4)
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How would we simulate the population?

For time period 1 then:

1. Each female founder i mates with probability ζ and under
random mating then

M1i ∼ Cat

(
(1− ζ,

ζ

b00
, ...,

ζ

b00
)′
)

(5)

with sample space {0, 1, ..., b00}.

2. Let the number of offspring born to a mated female i, be
independent Poisson random variables with parameter λ1.
Each of the offspring are female with probability ω then

b10 ∼ Pois

(
λ1(1− ω)

b01∑
i=1

I(M1i > 0)

)
(6)

b11 ∼ Pois

(
λ1ω

b01∑
i=1

I(M1i > 0)

)
(7)
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How would we simulate the population?

For time period 1 then:

3. The mother of an offspring h is a Categorical random variable
such that

rh ∼ Cat

(
I(M1 > 0)

(
1∑b01

i=1 I(M1i > 0)
, ...,

1∑b01
i=1 I(M1i > 0)

)′
)

(8)

where rh = i if female i is the mother of h.

4. Each founder survives until the start of period 2 with
probability ϕ1.

5. If a founder dies between the start of period 1 and 2 they are
recovered with probability π1.
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How would we simulate the population?

We can generalise the model to K periods. For j ∈ {1, ...,K}:

• Mji ∼ Cat

((
1− ζ, ζ

Aj0.
, ..., ζ

Aj0.

)′
)

if Aj1i = 1

• bj0 ∼ Pois

(
λj(1− ω)

∑A.1

i=1 I(Mji > 0)

)
• bj1 ∼ Pois

(
λjω

∑A.1

i=1 I(Mji > 0)

)

• rh ∼ Cat

(
I(Mj > 0)

(
1∑A.1

i=1 I(Mji>0)
, ..., 1∑A.1

i=1 I(Mji>0)

)′
)

for all

h born in j.

• di ∼ Cat(ξt) where i is born in period t and ξt is a function of ϕ.

• xi ∼ Bern(πj) where i died in period j.



How would we simulate the population?

We model a founder’s genotype at L independent loci by

Gil ∼ Cat(γl), l ∈ {1, ..., L} (9)

and a non-founder i born in j with mother ri and father Mjri by

Gil ∼ Cat

((
1

4
,
1

4
,
1

4
,
1

4

)′
)

(10)

with sample space

Gil = {(Gri1, GMjri
1), (Gri2, GMjri

1),

(Gri1, GMjri
2), (Gri2, GMjri

2)} (11)



Implementation

1. Update Bjs for j ∈ {0, 1, ...,K − 2} and s ∈ {0, 1} using a
Metropolis-Hastings split-merge reversible jump

2. Update BK−1,s for s ∈ {0, 1} using a Metropolis-Hastings
reversible jump

3. Update all other variables using either Metropolis-Hastings
reversible jump moves or Gibbs sampling



Simulation results

We simulated 100 pedigrees with true parameters values:
θ = (K,λ0, λ1:(K−1), ϕ, π, ω, ζ) = (4, 20, 3, 0.7, 0.65, 0.5, 0.5) (12)
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Continuing work

• Test on real data
• Speed up algorithm:

▶ Marginalising over unobserved branches of the pedigree
▶ Joint updates for genotype

• Explore adjustments to the model required to allow for
inbreeding



Thanks!

Thank-you to the NZSA for the NZSA Tidy International Travel
Scholarship to attend this conference.
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