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Mark-Recapture

Suppose we have three time periods and capture the following
foxes in each period:
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Close-Kin Mark-Recapture

® Bravington et al. (2016)! defined a pseudo-likelihood model,
identifying the number of kinship pairs within the sample from
the genetic data

® The model can be fit to dead recoveries without previous
observation of the individual

® Rather than a physical tag a genetic sample is taken from
each observed animal
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1Bravington, M., Skaug, H. J., & Anderson, E. C. (2016).Close-kin mark-recapture. Statistical Science, 31(2),
259-274. https://doi.org/http://doi.org/10.1214/16-STS552
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The population’s pedigree

Consider two time periods, with a founder generation and one
offspring period, and we observe the highlighted individuals.
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Model assumptions and restrictions

We assume:
1. The population is geographically closed

2. All individuals born before the study began are defined as
founders and their parents are undefined

3. All individuals born during the study must have a female and
male parent within the super population

4. Births are defined as individuals who were born within the
period and survived until the start of the next time period
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How would we simulate the population?

Let by be the number of founders. We define

by ~ Pois(Aq) (1)
si ~ Bern(w) fori € 1,...,bp (2)

where s; = 1 if individual 7 is female.
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How would we simulate the population?

Let by be the number of founders. We define

by ~ Pois(Aq) (1)
si ~ Bern(w) fori € 1,...,bp (2)

where s; = 1 if individual 7 is female.

Using the properties of a Bernoulli marked Poisson we define bgg
and bg; as the number of male and female founders respectively
where

boo ~ POiS()\o(l - w)) (3)
bo1 ~ POiS(/\ow) (4)
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How would we simulate the population?

For time period 1 then:

1. Each female founder ¢ mates with probability ¢ and under
random mating then

Mg~ Gat(1- G ) (5)

PICEXEY —
boo boo

with sample space {0, 1, ..., by}

University
of Otago



How would we simulate the population?

For time period 1 then:

1. Each female founder ¢ mates with probability ¢ and under
random mating then

Mg~ Gat(1- G ) (5)

boo” " oo
with sample space {0, 1, ..., by}
2. Let the number of offspring born to a mated female i, be

independent Poisson random variables with parameter A;.
Each of the offspring are female with probability w then

bo1
bio ~ Pois</\1(1 —w) Y I(My; > 0)) (6)

i=1

bo1
biy ~ Pois(/\loJZI(Mh; > o)> (7)

=1



How would we simulate the population?

For time period 1 then:

3. The mother of an offspring h is a Categorical random variable
such that

1 1 !
rp ~ Cat I(M1>O)< 7 s 3B )
Ziill I(Mli > O) Ziozll I(Mli > 0)

(8)

where 1, = i if female 7 is the mother of A.
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such that

1 1 I
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where 1, = i if female 7 is the mother of A.

4. Each founder survives until the start of period 2 with
probability ¢;.

University
of Otago



How would we simulate the population?

For time period 1 then:

3. The mother of an offspring h is a Categorical random variable
such that

1 1 I
rp ~ Cat (I(Ml >0) (Efgll I(My; >0)" 20 1(My; > 0)> )
(8)

where 1, = i if female 7 is the mother of A.

4. Each founder survives until the start of period 2 with
probability ¢;.

5. If a founder dies between the start of period 1 and 2 they are
recovered with probability ;.
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How would we simulate the population?

We can generalise the model to K periods. For j € {1,..., K}:
li
[ szfvcat< C’Ao ’AEO)> IfA]h:l

* bjo ~ Pois (A] sS4 T(My, > 0))

bj1 ~ P0|s<>\JwZA1 I(Mj; > o))

!/
) 1 1
ry, ~ Cat (I(MJ > O)(Z?‘i G50 AT I(Mji>0)> ) for all

h born in j.

d; ~ Cat(&;) where i is born in period ¢ and & is a function of ¢.

x; ~ Bern(m;) where ¢ died in period j.
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How would we simulate the population?

We model a founder’s genotype at L independent loci by
Gi ~ Cat(7l)' le {17 aL} (9)

and a non-founder i born in j with mother r; and father Mj,, by
Gu~Cat[ (L1112 / (10)
il a 47 47 47 4

gil = {(Gmla GMjril)7 (Gri27 GMjril)v
(GTiluGMjriQ)’ (Gri27GMjri2)} (11)

with sample space
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Implementation

1. Update Bj, for j € {0,1, ...
Metropolis-Hastings split-merge reversible jump

,K —2} and s € {0,1} using a

2. Update B for s € {0,1} using a Metropolis-Hastings
reversible jump

3. Update all other variables using either Metropolis-Hastings
reversible jump moves or Gibbs sampling

@ AA AB @ BB AA
AA AB @ AB
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Simulation results

We simulated 100 pedigrees with true parameters values:

0 = (K, X0, A1, (K1), ®> 7w, () = (4,20,3,0.7,0.65,0.5,0.5) (12)
}o estimate and 95% credible interval, coverage = 0.91 (k1) estimate and 95% credible interval, coverage = 0.89
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Continuing work

® Test on real data
® Speed up algorithm:

» Marginalising over unobserved branches of the pedigree
» Joint updates for genotype

® Explore adjustments to the model required to allow for
inbreeding
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